Peter
Abstract:Large language models for code are advancing fast, yet our ability to evaluate them lags behind. Current benchmarks focus on narrow tasks and single metrics, which hide critical gaps in robustness, interpretability, fairness, efficiency, and real-world usability. They also suffer from inconsistent data engineering practices, limited software engineering context, and widespread contamination issues. To understand these problems and chart a path forward, we combined an in-depth survey of existing benchmarks with insights gathered from a dedicated community workshop. We identified three core barriers to reliable evaluation: the absence of software-engineering-rich datasets, overreliance on ML-centric metrics, and the lack of standardized, reproducible data pipelines. Building on these findings, we introduce BEHELM, a holistic benchmarking infrastructure that unifies software-scenario specification with multi-metric evaluation. BEHELM provides a structured way to assess models across tasks, languages, input and output granularities, and key quality dimensions. Our goal is to reduce the overhead currently required to construct benchmarks while enabling a fair, realistic, and future-proof assessment of LLMs in software engineering.
Abstract:The capacity of AI agents to effectively handle tasks of increasing duration and complexity continues to grow, demonstrating exceptional performance in coding, deep research, and complex problem-solving evaluations. However, in daily scenarios, the perception of these advanced AI capabilities among general users remains limited. We argue that current evaluations prioritize increasing task difficulty without sufficiently addressing the diversity of agentic tasks necessary to cover the daily work, life, and learning activities of a broad demographic. To address this, we propose AgentIF-OneDay, aimed at determining whether general users can utilize natural language instructions and AI agents to complete a diverse array of daily tasks. These tasks require not only solving problems through dialogue but also understanding various attachment types and delivering tangible file-based results. The benchmark is structured around three user-centric categories: Open Workflow Execution, which assesses adherence to explicit and complex workflows; Latent Instruction, which requires agents to infer implicit instructions from attachments; and Iterative Refinement, which involves modifying or expanding upon ongoing work. We employ instance-level rubrics and a refined evaluation pipeline that aligns LLM-based verification with human judgment, achieving an 80.1% agreement rate using Gemini-3-Pro. AgentIF-OneDay comprises 104 tasks covering 767 scoring points. We benchmarked four leading general AI agents and found that agent products built based on APIs and ChatGPT agents based on agent RL remain in the first tier simultaneously. Leading LLM APIs and open-source models have internalized agentic capabilities, enabling AI application teams to develop cutting-edge Agent products.
Abstract:Large vision-language models (LVLMs) exhibit remarkable capabilities in cross-modal tasks but face significant safety challenges, which undermine their reliability in real-world applications. Efforts have been made to build LVLM safety evaluation benchmarks to uncover their vulnerability. However, existing benchmarks are hindered by their labor-intensive construction process, static complexity, and limited discriminative power. Thus, they may fail to keep pace with rapidly evolving models and emerging risks. To address these limitations, we propose VLSafetyBencher, the first automated system for LVLM safety benchmarking. VLSafetyBencher introduces four collaborative agents: Data Preprocessing, Generation, Augmentation, and Selection agents to construct and select high-quality samples. Experiments validates that VLSafetyBencher can construct high-quality safety benchmarks within one week at a minimal cost. The generated benchmark effectively distinguish safety, with a safety rate disparity of 70% between the most and least safe models.
Abstract:The dynamic multi-mode resource-constrained project scheduling problem is a challenging scheduling problem that requires making decisions on both the execution order of activities and their corresponding execution modes. Genetic programming has been widely applied as a hyper-heuristic to evolve priority rules that guide the selection of activity-mode pairs from the current eligible set. Recently, an activity group selection strategy has been proposed to select a subset of activities rather than a single activity at each decision point, allowing for more effective scheduling by considering the interdependence between activities. Although effective in small-scale instances, this strategy suffers from scalability issues when applied to larger problems. In this work, we enhance the scalability of the group selection strategy by introducing a knee-point-based selection mechanism to identify a promising subset of activities before evaluating their combinations. An activity ordering rule is first used to rank all eligible activity-mode pairs, followed by a knee point selection to find the promising pairs. Then, a group selection rule selects the best activity combination. We develop a multi-tree GP framework to evolve both types of rules simultaneously. Experimental results demonstrate that our approach scales well to large instances and outperforms GP with sequential decision-making in most scenarios.
Abstract:Current chart-specific tasks, such as chart question answering, chart parsing, and chart generation, are typically studied in isolation, preventing models from learning the shared semantics that link chart generation and interpretation. We introduce CycleChart, a consistency-based learning framework for bidirectional chart understanding and generation. CycleChart adopts a schema-centric formulation as a common interface across tasks. We construct a consistent multi-task dataset, where each chart sample includes aligned annotations for schema prediction, data parsing, and question answering. To learn cross-directional chart semantics, CycleChart introduces a generate-parse consistency objective: the model generates a chart schema from a table and a textual query, then learns to recover the schema and data from the generated chart, enforcing semantic alignment across directions. CycleChart achieves strong results on chart generation, chart parsing, and chart question answering, demonstrating improved cross-task generalization and marking a step toward more general chart understanding models.
Abstract:Prior works on 3D hand trajectory prediction are constrained by datasets that decouple motion from semantic supervision and by models that weakly link reasoning and action. To address these, we first present the EgoMAN dataset, a large-scale egocentric dataset for interaction stage-aware 3D hand trajectory prediction with 219K 6DoF trajectories and 3M structured QA pairs for semantic, spatial, and motion reasoning. We then introduce the EgoMAN model, a reasoning-to-motion framework that links vision-language reasoning and motion generation via a trajectory-token interface. Trained progressively to align reasoning with motion dynamics, our approach yields accurate and stage-aware trajectories with generalization across real-world scenes.




Abstract:Image Compression for Machines (ICM) has emerged as a pivotal research direction in the field of visual data compression. However, with the rapid evolution of machine intelligence, the target of compression has shifted from task-specific virtual models to Embodied agents operating in real-world environments. To address the communication constraints of Embodied AI in multi-agent systems and ensure real-time task execution, this paper introduces, for the first time, the scientific problem of Embodied Image Compression. We establish a standardized benchmark, EmbodiedComp, to facilitate systematic evaluation under ultra-low bitrate conditions in a closed-loop setting. Through extensive empirical studies in both simulated and real-world settings, we demonstrate that existing Vision-Language-Action models (VLAs) fail to reliably perform even simple manipulation tasks when compressed below the Embodied bitrate threshold. We anticipate that EmbodiedComp will catalyze the development of domain-specific compression tailored for Embodied agents , thereby accelerating the Embodied AI deployment in the Real-world.
Abstract:Hundreds of benchmarks dedicated to evaluating large models from multiple perspectives have been presented over the past few years. Albeit substantial efforts, most of them remain closed-ended and are prone to overfitting due to the potential data contamination in the ever-growing training corpus of large models, thereby undermining the credibility of the evaluation. Moreover, the increasing scale and scope of current benchmarks with transient metrics, as well as the heavily human-dependent curation procedure, pose significant challenges for timely maintenance and adaptation to gauge the advancing capabilities of large models. In this paper, we introduce MACEval, a \Multi-Agent Continual Evaluation network for dynamic evaluation of large models, and define a new set of metrics to quantify performance longitudinally and sustainably. MACEval adopts an interactive and autonomous evaluation mode that employs role assignment, in-process data generation, and evaluation routing through a cascaded agent network. Extensive experiments on 9 open-ended tasks with 23 participating large models demonstrate that MACEval is (1) human-free and automatic, mitigating laborious result processing with inter-agent judgment guided; (2) efficient and economical, reducing a considerable amount of data and overhead to obtain similar results compared to related benchmarks; and (3) flexible and scalable, migrating or integrating existing benchmarks via customized evaluation topologies. We hope that MACEval can broaden future directions of large model evaluation.




Abstract:Location-Based Social Network (LBSN) check-in trajectory data are important for many practical applications, like POI recommendation, advertising, and pandemic intervention. However, the high collection costs and ever-increasing privacy concerns prevent us from accessing large-scale LBSN trajectory data. The recent advances in synthetic data generation provide us with a new opportunity to achieve this, which utilizes generative AI to generate synthetic data that preserves the characteristics of real data while ensuring privacy protection. However, generating synthetic LBSN check-in trajectories remains challenging due to their spatially discrete, temporally irregular nature and the complex spatio-temporal patterns caused by sparse activities and uncertain human mobility. To address this challenge, we propose GeoGen, a two-stage coarse-to-fine framework for large-scale LBSN check-in trajectory generation. In the first stage, we reconstruct spatially continuous, temporally regular latent movement sequences from the original LBSN check-in trajectories and then design a Sparsity-aware Spatio-temporal Diffusion model (S$^2$TDiff) with an efficient denosing network to learn their underlying behavioral patterns. In the second stage, we design Coarse2FineNet, a Transformer-based Seq2Seq architecture equipped with a dynamic context fusion mechanism in the encoder and a multi-task hybrid-head decoder, which generates fine-grained LBSN trajectories based on coarse-grained latent movement sequences by modeling semantic relevance and behavioral uncertainty. Extensive experiments on four real-world datasets show that GeoGen excels state-of-the-art models for both fidelity and utility evaluation, e.g., it increases over 69% and 55% in distance and radius metrics on the FS-TKY dataset.

Abstract:Integrative analysis of multi-institutional Electronic Health Record (EHR) data enhances the reliability and generalizability of translational research by leveraging larger, more diverse patient cohorts and incorporating multiple data modalities. However, harmonizing EHR data across institutions poses major challenges due to data heterogeneity, semantic differences, and privacy concerns. To address these challenges, we introduce $\textit{PEHRT}$, a standardized pipeline for efficient EHR data harmonization consisting of two core modules: (1) data pre-processing and (2) representation learning. PEHRT maps EHR data to standard coding systems and uses advanced machine learning to generate research-ready datasets without requiring individual-level data sharing. Our pipeline is also data model agnostic and designed for streamlined execution across institutions based on our extensive real-world experience. We provide a complete suite of open source software, accompanied by a user-friendly tutorial, and demonstrate the utility of PEHRT in a variety of tasks using data from diverse healthcare systems.